Search results

Search for "nanoporous palladium" in Full Text gives 2 result(s) in Beilstein Journal of Nanotechnology.

Hydrogen-induced plasticity in nanoporous palladium

  • Markus Gößler,
  • Eva-Maria Steyskal,
  • Markus Stütz,
  • Norbert Enzinger and
  • Roland Würschum

Beilstein J. Nanotechnol. 2018, 9, 3013–3024, doi:10.3762/bjnano.9.280

Graphical Abstract
  • , Austria 10.3762/bjnano.9.280 Abstract The mechanical strain response of nanoporous palladium (npPd) upon electrochemical hydrogenation using an in situ dilatometric technique is investigated. NpPd with an average ligament diameter of approximately 20 nm is produced via electrochemical dealloying. A
  • hydrogen-induced phase transition from PdHβ to PdHα is found to enable internal-stress plasticity (or transformation-mismatch plasticity) in nanoporous palladium, which leads to exceptionally high strains without fracture as a result of external forces. The high surface stress in the nanoporous structure
  • are elucidated, taking into account characteristics of structure and deformation mechanism. Keywords: electrochemistry; hydride formation; in situ dilatometry; internal-stress plasticity; nanoporous palladium; Introduction Material properties on the nanoscale can differ substantially from their bulk
PDF
Album
Full Research Paper
Published 10 Dec 2018

In situ characterization of hydrogen absorption in nanoporous palladium produced by dealloying

  • Eva-Maria Steyskal,
  • Christopher Wiednig,
  • Norbert Enzinger and
  • Roland Würschum

Beilstein J. Nanotechnol. 2016, 7, 1197–1201, doi:10.3762/bjnano.7.110

Graphical Abstract
  • /bjnano.7.110 Abstract Palladium is a frequently used model system for hydrogen storage. During the past few decades, particular interest was placed on the superior H-absorption properties of nanostructured Pd systems. In the present study nanoporous palladium (np-Pd) is produced by electrochemical
  • reversible actuation clearly exceeds the values found in the literature, which is most likely due to the unique structure of np-Pd with an extraordinarily high surface-to-volume ratio. Keywords: dealloying; dilatometry; hydrogen storage; nanoporous palladium; resistometry; Findings The knowledge about the
  • and catalysis [2]. One attractive method to produce nanostructured metals with macroscopic dimensions is dealloying, an (electro-)chemical process, which removes the less noble component from an alloy by selective etching [3]. Nanoporous palladium (np-Pd) produced by free corrosion [4] as well as
PDF
Album
Letter
Published 17 Aug 2016
Other Beilstein-Institut Open Science Activities